March 6, 2012

Cover Story

CEO of the Year

Utah’s business landscape is rich with professionals who have le...Read More

Featured Articles

Did you go Skiing this winter?

Around Utah

Sections

Spotlight
Martin Plaehn

Spotlight
Karen Sendelback

Legal Briefs
Social Media and Employers: Friends or Enemies?

Money Talk
The Case for HSAs

Economic Insight
Time to Show Up

Lessons Learned
Make a Move

TechKnowledge
In the Lab

EntrepreneurEdge
Rent to Own

Business Trends
Back from the Dead

Executive Living
Artful Inspiration

Features
A Breath of Fresh Air

Features
Worst-Case Scenario

Regional Report
Northern Utah

Focus
Measure Up

Industry Outlook
Travel & Tourism

Players
Players

Article

A New Direction for Game Controllers

Press Release

March 6, 2012

University of Utah engineers designed a new kind of video game controller that not only vibrates like existing devices, but pulls and stretches the thumb tips in different directions to simulate the tug of a fishing line, the recoil of a gun or the feeling of ocean waves.

“I’m hoping we can get this into production when the next game consoles come out in a couple of years,” said William Provancher, an associate professor of mechanical engineering.

The first haptic or touch feedback in game controllers came in 1997 with the Nintendo64 system’s “rumble pack” that makes the hands vibrate using an off-balance motor to simulate the feel of driving a race car on a gravel road, flying a jet or dueling with Star Wars light sabers, Provancher and colleagues write.

The new controller does something additional: it delivers directional cues to the player by stretching the skin of the thumb tips in different directions.

“We have developed feedback modes that enhance immersiveness and realism for gaming scenarios such as collision, recoil from a gun, the feeling of being pushed by ocean waves or crawling prone in a first-person shooter game,” Provancher said.

The latest game controller prototype looks like controllers for Microsoft’s Xbox or Sony’s PlayStation but with an addition to the controller’s normal thumb joysticks, on which the thumbs are placed and moved in different directions to control the game. In the new controller, the middle of each ring-shaped thumb stick has a round, red “tactor” that looks like the eraser-head-shaped IBM TrackPoint or pointing stick now found on a number of laptop computer brands.

Video games commonly are designed so the left thumb stick controls motion and the right controls the player’s gaze or aim. With the new controller, as a soldier avatar crawls forward, the player pushes the left thumb stick forward and feels the tactors tugging alternately back and forth under both thumbs, mimicking the soldier crawling first with one arm, then the other.

Provancher also hopes to adapt the new game controller design for use as a smart phone peripheral device. A phone would fit into the device with game-controlling thumb sticks and tactors on each side of the phone.

Smart phones provide an analogy for the new advance in game controllers. Early smart phones used vibrations only when the phone rang. Current models use more sophisticated feedback: a vibration with each touch to help users improve their accuracy when they use a touch-screen keyboard.
          
Provancher’s previous research showed that skin-stretch devices on a steering wheel could stretch the index finger tips left or right to tell drivers to turn left or right – and did so just as accurately as a navigation system’s computerized voice. His latest research is more than fun and games because “by placing skin-stretch feedback in a game controller, it creates a nice testing environment for understanding human perception and cognition,” he said.
          
A critical question in determining if the new game controller would work dealt with how players perceived front-back and left-right tugs at their thumb tips when the thumbs were angled inward as they are in a typical Xbox or PlayStation controller.

A study analyzing how gamers perform with the new, thumb-tip feedback device was conducted by Provancher, computer science doctoral student Ashley Guinan, computer science master’s degree student Rebecca Koslover and mechanical engineering master’s student Nathaniel Caswell. The research was funded by the National Science Foundation and the University of Utah.

The study found that gamers’ brains made the necessary mental rotation of the directional tugs so they could perform just as well if their thumbs were angled as if their thumbs were straight. Future research will focus on details of how to provide skin-stretch feedback effectively at the same time a game also produces sounds, sights and vibrations.
(3.6.12)

Page 12
Utah Business Social
UB Events View All
SAMY Awards 2015Utah Business Event
Jan 23, 2015
Utah Business magazine along with Presenting Sponsor Griffin Hill are pleased to present the 201...
Forty Under 40 - 2015Utah Business Event
Feb 26, 2015
Utah Business Magazine along with Presenting Sponsors: Kirton McConkie, BIG-D Construction and Ma...
CEO of the Year 2015 ... NOMINATIONS NOW OPEN!Utah Business Event
Mar 31, 2015
CEO of the Year Nominations end - January 7, 2015. Visit: www.utahbusiness.com/nomination_item...
Community Events View All
Anatomy Sketch Night | December 18th
Dec 18, 2014
During his life, Leonardo da Vinci sketched 100's of anatomical drawings of humans and animals. ...
Sandler Management Solutions
Dec 19, 2014
Looking for a way to manage your team systematically and effectively? Sandler Management Solutio...

info@utahbusiness.com  |  90 South 400 West, Ste 650 Salt Lake City, Utah 84101   |  (801) 568-0114

Advertise with Utah Business

Submit an Event

* indicates required information
* Event Name:
Price (general):
Website (if applicable):
Coordinator's Name:
Coordinator's Email:
Coordinator's Phone:
Venue Name:
Venue Address:
Venue City:
Venue Zip:
Event Capacity:
Date(s):
to
* Event Description:
  Cancel